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Abstract. We consider systems of two and three electrons in a two-dimensional parabolic
quantum dot. A magnetic field is applied perpendicularly to the plane of motion of the electron.
We show that the energy levels corresponding to states with high angular momentum,J , and
a low number of vibrational quanta may be systematically computed as power series in 1/|J |.
These states are relevant in the high-B limit.

1. Introduction

Recently, few-electron systems in nearly two-dimensional semiconductor structures has been
a subject of intense theoretical and experimental research [1]. In the present paper, we
continue a programme, initiated in [2, 3], aimed at providing reliable analytical estimates
for the energy levels of model two-dimensional systems on the basis of a simple physical
picture for the states.

The idea is to use the inverse of the angular momentum as an expansion parameter in
the Schr̈odinger equation, thus obtaining nonperturbative series for the energy and the wave
function. Variants of this method have been widely used in atomic and nuclear physics
[4, 5].

The static exciton in a magnetic field was considered in [2]. Energy levels were
computed as a function of the mass ratio and the magnetic field. Comparison with estimates
obtained from two-point Padé approximants [6] yielded excellent results at any magnetic
field strength.

In reference [3], a model of three electrons in a quantum dot with 1/r2 repulsion,
considered previously in [7], was studied. The 1/|J |-method provided analytical estimates
for the energy and a set of approximate quantum numbers to label the states. We will make
use below of many of the results obtained in [3].

Systems of two and three electrons in a two-dimensional parabolic quantum dot are to
be studied in the present paper. A magnetic field is applied perpendicularly to the dot’s
plane. Numerical calculations for these systems have been reported elsewhere [8–10]. In
this problem, there is only one relevant parameter,β = (Ecoul/h̄�)1/6, whereEcoul is the
characteristic Coulomb energy, and� is expressed in terms of the dot and the cyclotron
frequencies as� = √(ω2

0 + ω2
c/4). β → 0 will be called the oscillator limit, andβ →∞

will be called the Wigner limit, suggesting that we are dealing with a few-electron version
of the Wigner solid. In typical quantum dot experiments,β ∼ 1.
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The physical picture emerging from the 1/|J |-expansion is the following. In the
leading approximation, the electrons are located at the vertices of a regular polygon, whose
side minimizes the total classical energy (centrifugal plus potential). The first corrections
take account of small (harmonic) vibrations around the equilibrium configuration. Higher
corrections come from anharmonic oscillations. This picture is supported by numerical
calculations for few-electron systems not only in the strong-coupling regime [11], but also
in the region whereβ ∼ 1 [12].

Reference [12 ] deserves special comment; in [12] the few-electron problem in Eckardt
coordinates is treated quasiclassically. Although the starting points are far apart, our results
are very similar up to the harmonic approximation. The main difference between reference
[12] and our work is that the expansion parameter is ¯h in [12], and is 1/|J | in our work.
Higher orders of the quasiclassical expansion are not reported in [12].

The plan of the paper is as follows. In section 2, we present the 1/|J |-method. Results
for two and three electrons are shown in sections 3 and 4. Concluding remarks are given
in the last section.

2. The 1/|J |-expansion

We start with the dimensionless Hamiltonian governing the two-dimensional motion ofN

electrons in a quantum dot of energy ¯hω0, and in a magnetic field normal to the plane of
motion:

H

h̄�
= 1

2

N∑
k=1

(p2
k + r2

k )+ β3
∑
k<l

1

rkl
+ ωc

2�

N∑
k=1

Jk + gωc
2�

Sz. (1)

The conventions are as follows.µ is the electron effective mass,ωc = eB/µc is the
cyclotron frequency,g is the effective gyromagnetic factor,Sz is the z-component of the
total spin of the system, and� = √(ω2

0 + ω2
c/4) is the effective dot frequency. The length

unit is
√
h̄/(µ�). The parameterβ is given by

β3 =
√
µe4

κ2h̄2

/
h̄�

whereκ denotes the dielectric constant.
The actual parameter governing the problem isβ. Whenβ � 1, the levels are small

perturbations around oscillator energies. On the other hand, whenβ → ∞, the energy
minimum is reached in a classical configuration which can be seen as a few-body model of
a Wigner crystal. Both limiting situations reduce to exactly solvable problems.

Through the introduction of Jacobi coordinates, the centre-of-mass motion is separated
from the internal motion:
H

h̄�
= Hcm

h̄�
+ Hint
h̄�

(2)

where
Hcm

h̄�
= −

(
∂2

∂ρ2
cm

+ 1

ρcm

∂

∂ρcm

)
+ J

2
cm

ρ2
cm

+ 1

4
ρ2
cm +

ωc

2�
Jcm (3)

Hint

h̄�
= −

N−1∑
k=1

(
∂2

∂ρ2
k

+ 1

ρk

∂

∂ρk

)
−

N−2∑
k=1

(
1

ρ2
k

+ 1

ρ2
k+1

)
∂2

∂θ2
k

+ 2
N−3∑
k=1

1

ρ2
k+1

∂2

∂θk ∂θk+1
+ 2iJ

N − 1

N−2∑
k=1

(
1

ρ2
k

− 1

ρ2
k+1

)
∂

∂θk
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+
N−1∑
k=1

(
J 2

(N − 1)2
1

ρ2
k

+ 1

4
ρ2
k

)
+ β3

∑
k<l

1

rkl
+ ωc

2�
J + g ωc

2�
Sz. (4)

We have writtenHint in terms of rotationally invariant coordinates, i.e. the moduli of the
Jacobi vectors and the angles between them. The Jacobi vectors were defined as

ρk =
√
µk/µ1

{
rk+1− 1

k

k∑
l=1

rl

}
k = 1, 2, . . . , N − 1 (5)

where the reduced masses areµk = k/(k + 1). The angle betweenρk andρk+1 is denoted
asθk. J labels the total internal angular momentum.

The eigenvalues ofHcm are simply

Ecm

h̄�
= 2ncm + |Jcm| + 1+ ωc

2�
Jcm. (6)

We shall obtain approximate expressions for the eigenvalues ofHint . We consider states
with high |J |-values, which are the relevant states at high magnetic fields. It is intuitively
evident that at high|J |, Eint ∼ |J | and 〈ρ2

k 〉 ∼ |J |. The solution of the Schrödinger
equation may be organized as a power series in 1/|J |. A scaling of dimensions such that
ρ2→ |J |ρ2 makes evident the dependence of each term on|J |. The scaled Hamiltonian is
written as

h = 1

|J |
{
Hint

h̄�
− ωc

2�
J − gωc

2�
Sz

}
=

N−1∑
k=1

{
1

(N − 1)2
1

ρ2
k

+ 1

4
ρ2
k

}
+ β̃3

∑
k<l

1

rkl

+ 1

J 2

{
−
N−1∑
k=1

(
∂2

∂ρ2
k

+ 1

ρk

∂

∂ρk

)
−

N−2∑
k=1

(
1

ρ2
k

+ 1

ρ2
k+1

)
∂2

∂θ2
k

+ 2
N−3∑
k=1

1

ρ2
k+1

∂2

∂θk ∂θk+1

}
+ 2i

J (N − 1)

N−2∑
k=1

(
1

ρ2
k

− 1

ρ2
k+1

)
∂

∂θk
(7)

where we have introduced the ‘renormalized’ coupling constantβ̃3 = β3/|J |3/2. When
taking the formal limit|J | → ∞, β̃3 is kept fixed to take account of Coulomb repulsion
nonperturbatively.

In what follows, we consider only the two- and three-electron problems. The only term
surviving in the r.h.s. of (7) when|J | → ∞ is the effective potential. Its absolute minimum
gives a classical contribution to the energy. It is reached in a configuration where the
particles sit at the corners of a regular polygon. In this configuration, the effective potential
is a function ofρ1 only:

Ueff = 2 sin2π/N

Nρ2
1

+ Nρ2
1

8 sin2π/N
+ β̃

3 sinπ/N

ρ1

∑
i<j

1

| sinθij /2| (8)

where θij is the angle between particlesi and j , measured from the c.m. Minimization
of Ueff leads to an equilibrium value forρ1, ρ10. The equilibrium values of the other
coordinates,ρk0, θk0, are determined from geometry.

Higher contributions to the energy come from relaxing the equilibrium configuration,
ρk = ρk0+ yk/|J |1/2, θk = θk0+ zk/|J |1/2. The r.h.s. of (7) may, thus, be expanded as

h = h0+ h2

|J | +
h3

|J |3/2 +
h4

|J |2 + · · · (9)
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whereh0 = Ueff (ρ10), h2 describes in general harmonic oscillations in effective magnetic
fields, andh3, h4, etc account for anharmonicities.

For the spatial wave function and the scaled energy (related toh), we write series like
equation (9):

ψ = ψ0+ ψ1

|J |1/2 +
ψ2

|J | + · · · (10)

ε = ε0+ ε2

|J | +
ε4

J 2
+ · · · . (11)

These expressions are substituted into the Schrödinger equation, leading to the chain of
uncoupled equations

h0 = ε0 (12)

h2ψ0 = ε2ψ0 etc. (13)

Higher corrections to the energy are obtained from ordinary perturbation theory, whereh3,
h4, etc are interpreted as perturbations.

Below, we present results for two and three electrons.

3. Two electrons

For two particles, there is only one Jacobi coordinate,ρ1 = r2 − r1. Its equilibrium value
(the modulus) satisfies the equation

0= −2+ 1

2
ρ4

10− β̃3ρ10. (14)

Writing ρ1 = ρ10 + y1/|J |1/2, and substituting into the r.h.s. of (7), we obtain the
operator coefficientsh2, h3, etc. In particular

h2 = − d2

dy2
1

+ 1

2
U ′′(ρ10)y

2
1 = ω1

(
a
†
1a1+ 1

2

)
(15)

whereω1 =
√

2U ′′(ρ10) =
√

3+ 4/ρ4
10, a1 = ω1/2y1/2+ ip1/ω

1/2, anda†1 = ω1/2y1/2−
ip1/ω

1/2. Note that in the oscillator limitω1 → 2, whereas in the Wigner limitω1

approaches the classical result
√

3 [13].
To this order, the spatial wave function is written as eiJθψ0(y1), whereψ0 ∼ (a†1)n|0〉,

andθ is the polar angle associated with the vectorρ1. Under a permutation of particles,θ
changes byπ , and thus even|J | correspond to unpolarized spin states,S = 0, and odd|J |
correspond to polarized states,S = 1.

The operatorshk, k > 3, can be written in general as

hk = (−1)k

ρk−2
10

{(
k − 1

ρ4
10

+ 1

2

)
yk1 + yk−3

1

∂

∂y1

}
. (16)

Their matrix elements can be straightforwardly computed. Let us write out the results for
the first nonzero terms of the series (11) in the present case:

ε0 = 3

4
ρ2

10−
1

ρ2
10

(17)

ε2 = ω1

(
n+ 1

2

)
(18)
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ε4 = 3

ρ2
10ω

2
1

(
3

ρ4
10

+ 1

2

)
(2n2+ 2n+ 1)− 1

4ρ2
10

− 1

ρ2
10ω

4
1

(
2

ρ4
10

+ 1

2

)2

(30n2+ 30n+ 11) (19)

ε6 = − 15

8ρ4
10ω

9
1

(4/ρ4
10+ 1)4(2n+ 1)(47n2+ 47n+ 31)

+ 9

2ρ4
10ω

7
1

(4/ρ4
10+ 1)2(6/ρ4

10+ 1)(2n+ 1)(25n2+ 25n+ 19)

− 1

2ρ4
10ω

5
1

(6/ρ4
10+ 1)2(2n+ 1)(87n2+ 87n+ 86)

+ 10

ρ12
10ω

5
1

(2n+ 1)(14n2+ 14n+ 13)

+ 1

ρ4
10ω

3
1

(2n+ 1){(10/ρ4
10+ 1)(5n2+ 5n+ 9)− 9/ρ4

10}

− 3

4ρ4
10ω1

(2n+ 1) etc. (20)

n labels the number of excitation quanta. It is a good approximate quantum number of
the problem over the whole interval 06 β < ∞. Notice that all of theεk with k > 2 go
to zero in both the oscillator and Wigner limits. Thus, the 1/|J |-expansion provides a nice
interpolation scheme.

In figure 1(a), we compare different approximations to the r.h.s. of (7) computed
according to the series (11). The excited state withn = 2 and |J | = 3 is shown. The
convergence is excellent. We cannot distinguish the curves containing the correctionsε4

and ε6 (printed as dashed lines) from the solid line corresponding toε0 + ε2/|J |. Even at
such a low value of|J | as 3,ε4 introduces corrections lower than 1%, andε6 introdudes
corrections lower than 0.3%. The relative weight ofε6 in ε = ε0+ ε2/|J |+ ε4/J

2+ ε6/|J |3
is shown in figure 1(b).

In figure 2, the energy|J |ε is compared with the estimate obtained in [14] from the
two-point Pad́e approximantP6,5(β). These approximants are exact in both theβ → 0 and
β → ∞ limits. They were checked against exact results at particular intermediate values
of β [15]. We expect the approximants to approach the exact energy from above, and to
differ from it by no more than a few parts in 103 [14]. The results are consistent with the
expectations. Similar results are revealed in the comparison with the numerical calculations
of [9].

Notice that the conditions for the application of perturbation theory are fulfilled at any
β when |J | > 3, i.e. the distances between adjacent levels, computed fromε0+ ε2/|J |, are
much greater than the correctionsε4/|J |2 + · · ·. Below, we will see that in the three-body
problem the corrections, although small, may cause a partial rearrangement of the spectrum.

4. Three electrons

In the three-electron system, there are two Jacobi vectors,ρ1 = r2 − r1 and ρ2 =√
4/3{r3 − (r1 + r2)/2}, in terms of which we define two distances,ρ1, ρ2, and one

angle,θ1. The equilibrium configuration is an equilateral triangle (ρ10 = ρ20, θ10 = ±π/2),
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(a)

(b)

Figure 1. (a) The energy of the|J | = 3, n = 2 state of two electrons. (b) The relative weight
of ε6 in ε.

whose side satisfies the equation

0= −1+ ρ4
10− 3β̃3ρ10. (21)

At its minimum,Ueff (ρ10) = 3ρ2
10/2− ρ−2

10 /2, thus providing a leading approximation
to the energy:

ε0 = 3

2
ρ2

10−
1

2ρ2
10

. (22)

Expanding around one of the two equivalent configurations, i.e. fixingθ10 = π/2 for
example, we obtain a series like (9) in which the first operator coefficients are given by

h2 = −
(
∂2

∂y2
1

+ ∂2

∂y2
2

+ 2

ρ2
10

∂2

∂z2
1

)
− 2i

ρ3
10

sgn(J )(y1− y2)
∂

∂z1
+ 1

4

(
3

ρ4
10

+ 1

)
(y2

1 + y2
2)
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Figure 2. The relative difference between|J |ε and theP6,5 Pad́e approximant for two electrons
in a state with|J | = 3, n = 0.

+ 1

16

(
1− 1

ρ4
10

)
(5y2

1 + 6y1y2+ 5y2
2 + 3ρ2

10z
2
1) (23)

h3 = − 1

ρ10

(
∂

∂y1
+ ∂

∂y2

)
+ 2

ρ3
10

(y1+ y2)
∂2

∂z2
1

+ 3i

ρ4
10

sgn(J )(y2
1 − y2

2)
∂

∂z1
− 1

ρ5
10

(y3
1 + y3

2)

− 1

64ρ10

(
1− 1

ρ4
10

)
(19y3

1 + 3y2
1y2+ 33y1y

2
2 + 9y3

2

− 9ρ2
10y1z

2
1 + 21ρ2

10y2z
2
1) (24)

h4 = 1

ρ2
10

(
y1

∂

∂y1
+ y2

∂

∂y2

)
− 3

ρ4
10

(y2
1 + y2

2)
∂2

∂z2
1

− 4i

ρ5
10

sgn(J )(y3
1 − y3

2)
∂

∂z1
+ 5

4ρ6
10

(y4
1 + y4

2)

+ 1

256ρ2
10

(
1− 1

ρ4
10

)(
329

4
y4

1 − 25y3
1y2+ 123

2
y2

1y
2
2 + 135y1y

3
2 +

9

4
y4

2

− 99

2
ρ2

10y
2
1z

2
1 + 27ρ2

10y1y2z
2
1 +

141

2
ρ2

10y
2
2z

2
1 +

41

4
ρ4

10z
4
1

)
etc. (25)

The Hamiltonianh2, which is to be taken as the zeroth-order Hamiltonian, describes a
harmonic oscillator of frequencyω1 = √(3+ 1/ρ4

10) in the variableys = (y1 + y2)/
√

2,
plus a combination of harmonic oscillators and an effective magnetic field in the variables
ym = (y1 − y2)/

√
2 andzm = ρ10z1/

√
2. Note that the ‘magnetic field’ comes from the

coupling between the angular momentum and the derivative with respect to the variable
θ1 (see the Hamiltonian (4) forN = 3). We may use a symmetric gauge to describe the
effective magnetic field. The Hamiltonian is transformed according toh′ = eif he−if , where
f = sign(J )ymzm/(2ρ2

10). h
′
2 takes the symmetric form

h′2 = −
∂2

∂y2
s

+ 1

4

(
3+ 1

ρ4
10

)
y2
s −

(
∂2

∂ξ2
+ 1

ξ

∂

∂ξ
+ 1

ξ2

∂2

∂α2

)
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− i
sgn(J )

ρ2
10

∂

∂α
+ 1

8

(
3− 1

ρ4
10

)
ξ2 (26)

where ξ = √
y2
m + z2

m and α = arctan(zm/ym). The corresponding eigenvalues and
eigenfunctions are

ε2 = ω1(ns + 1/2)+ ω2(2n+ |m| + 1)+ sgn(J )mω3 (27)

ψ0 ∼ Hns (
√
ω1/2ys)e

−ω1y
2
s /4ξ |m|e−ω2ξ

2/4L|m|n (ω2ξ
2/2)eimα (28)

in which ω2 =
√

3/2− ρ−4
10 /2, ω3 = 1/ρ2

10, Hns , andL|m|n are Hermite and generalized
Laguerre polynomials, andn and m are respectively principal and magnetic quantum
numbers in the effective magnetic field. In the oscillator limit,ω1 → 2, ω2, ω3 → 1,
whereas in the Wigner limit,ρ10→∞, ω1→

√
3, ω2→

√
3/2, andω3→ 0. At finite β̃

there is no degeneracy between the states ofh2; thus we may use nondegenerate perturbation
theory to compute corrections.

We shall identify which of the levels (J, ns, n,m) may describe electron states. This
set of quantum numbers will serve as approximate quantum numbers for the three-electron
problem. At intermediate couplings, a small mixing between the states ofh′2 will be induced
by the correctionsh′3 andh′4.

Let us recall the symmetry requirements for three-electron wave functions. A spatially
antisymmetric wave function,90 = eiJ4ψ0, where 4 accounts for global rotations,
corresponds to a spin-polarized state,S = 3/2, whereas a mixed-symmetry90 is related to
an unpolarized spin state,S = 1/2. Symmetry transformations will be expressed in terms of
the variables that we are using, i.e.ys , ξ , andα. Additionally, to identify physical states,90

will be compared with oscillator functions for̃β → 0. A detailed analysis is presented in the
appendix of paper [3], to which we refer the reader. The main conclusion is that in the(n,m)

plane, the spatially symmetric and antisymmetric states occupy the linesm = J +3k, where
k is an integer. For example, let us consider the first states withJ = −3 whenβ̃ � 1. The
lowest state is (ns, n,m) = (0, 0, 0). This corresponds to both one antisymmetric and one
symmetric state. In our scheme, as tunnelling effects are not included, they are degenerate
in energy. Of course, only the antisymmetric state may correspond to a state of three
electrons. Very near to the lowest state there is the mixed-symmetry doublet,(0, 0, 1). At
excitation energies near 2, there are the levels(1, 0, 0), (1, 0, 1), (0, 0,−1), (0, 1, 0), and
(0, 1, 1). Symmetric and antisymmetric states havem = 0. The next set of states is at
excitation energies near 4, etc.

Up to this order, the energy computed fromε = ε0+ε2/|J | leads to results very similar
to that reported in [12]. That is, whenβ ∼ 1 the relative error of the lowest state with
a given |J | represents only a few per cent of the total energy at|J | = 3, and decreases
considerably as|J | is increased. The reader may look at figures 3 and 4 of paper [12] as
examples.

Let us studyε whenβ is varied from 0 to∞. As in the two-electron problem, the higher
corrections,ε4/|J |2 + · · ·, go to zero in both theβ → 0 andβ → ∞ limits. However,
for certain levels, a rearrangement of the spectrum may take place. For example, let us
consider spatially antisymmetric states withJ = −3k, wherek is positive and high enough.
The lowest state in this sector has quantum numbers(0, 0, 0). We show in figure 3 the
excitation energies of three states with quantum numbers(0, 0, 3), (1, 0, 0), and (0, 1, 0).
Their energies are 3(ω2 − ω3), ω1, and 2ω2 respectively. Transitions among these states
induced byh′3, h′4, etc may occur at̃β > 0.6, thus resulting in a rearrangement of levels.
To compute their energies at the intermediate values ofβ where the intersections occur,
we shall resolve the degeneracy by means of degenerate perturbation theory. On the other
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Figure 3. Excitation energies of three states withJ = −3k, andk positive and high enough.
The quantum numbers are indicated.

hand, there are levels, in particular those with numbers(0, 0, 0), for which we can apply
the 1/|J |-expansion continuously from̃β = 0 to∞.

Let us compute the coefficientε4 for a state with quantum numbers(0, 0, 0). We assume
J < 0 and|J | large enough. These are the relevant states at high magnetic fields. We shall
compute the matrix elements entering the expression

ε4 = 〈0, 0, 0|h′4|0, 0, 0〉 −
∑
ns ,n,m

〈0, 0, 0|h′3|ns, n,m〉〈ns, n,m|h′3|0, 0, 0〉
nsω1+ (2n+ |m|)ω2−mω3

. (29)

Taking into account the explicit form ofh′3, i.e.

h′3 = A
∂

∂ys
+ Bys + Cy3

s +D (30)

where

A = −
√

2

ρ10
(31)

B =
√

2

ρ10

{
∂2

∂z2
m

+ 2i
sgn(J )

ρ2
10

ym
∂

∂zm
− 1

4ρ4
10

y2
m −

3

16

(
1− 1

ρ4
10

)
(y2
m + z2

m)

}
(32)

C = −
√

2

4ρ10

(
1+ 1

ρ4
10

)
(33)

D = − 5
√

2

32ρ10

(
1− 1

ρ4
10

)
(y3
m − 3ymz

2
m) (34)

we obtain that the sum over intermediate states in (29) contains only a few terms. The
following result forε4 arises:

ε4 = 〈0, 0, 0|h′4|0, 0, 0〉 − C2

3ω1
〈3|y3

s |0〉2
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− 1

3
〈0, 3|D|0, 0〉2

(
1

ω2− ω3
+ 1

ω2+ ω3

)
+ A

2

ω1
〈1| ∂
∂ys
|0〉2

− 2C

ω1
〈1|ys |0〉〈1|y3

s |0〉〈0, 0|B|0, 0〉

− C2

ω1
〈1|y3

s |0〉2−
1

ω1
〈1|ys |0〉2〈0, 0|B|0, 0〉2

− 〈1|ys |0〉2
{ 〈0, 2|B|0, 0〉2
ω1+ 2(ω2− ω3)

+ 〈0,−2|B|0, 0〉2
ω1+ 2(ω2+ ω3)

}
(35)

where

〈0, 0, 0|h′4|0, 0, 0〉 = − 1

ρ2
10

− 3

ω2ρ
6
10

(
1

ω2
+ 1

ω1

)
+ 15

8ρ6
10

(
1

ω1
+ 1

ω2

)2

+ 3

8ρ2
10

(
1+ ω2

ω1
+ 1

ω1ω2ρ
4
10

+ 3

ω2
2ρ

4
10

)
+ 3

64ρ2
10

(
1− 1

ρ4
10

)(
13

ω2
2

+ 12

ω1ω2
+ 16

ω2
1

)
(36)

〈0, 3|D|0, 0〉 = − 5
√

6

16ρ10ω
3/2
2

(
1− 1

ρ4
10

)
(37)

〈0, 0|B|0, 0〉 = −
√

2ω2

2ρ10
(38)

〈0,±2|B|0, 0〉 = ± 1

ρ3
10

− ω2

4ρ10
− 1

4ω2ρ
3
10

(39)

and the matrix elements involvingys are ordinary oscillator matrix elements, that is
〈1|ys |0〉 = 1/

√
ω1, etc. Note that, as mentioned above,ε4 → 0 in both theβ → 0

andβ →∞ limits.

Figure 4. The relative difference between|J |ε and theP5,4 Pad́e approximant for three electrons.
The lowest antisymmetric state withJ = −3 is studied.
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Figure 5. The relative weight ofε4 in ε. The same state as in figure 4 is considered.

In figure 4 we compare the 1/|J |-expansion and the two-point Padé approximantP5,4(β)

of [14] for the lowest antisymmetric state withJ = −3. As in the two-electron case, the
relative error is of the same order as the error of the Padé estimate, i.e. a few parts in
103. The comparison with the numerical results of [10] for polarized states leads to similar
conclusions. We show in figure 5 the relative weight ofε4 in ε = ε0 + ε2/|J | + ε4/J

2.
For states with still higher values of|J |, the relative magnitude of the contribution ofε4

decreases considerably.

5. Conclusions

We have computed the energy levels of two and three electrons in an ideal parabolic two-
dimensional quantum dot in the presence of a magnetic field. States with high angular
momentum and a low number of excitation (vibrational) quanta were considered. The
energy was found as a series in the ‘small’ parameter 1/|J |. The series exhibits good
convergence properties even at|J | = 3. Notice that the expressions obtained for two
electrons (equations (17–20)) can be used for any level, provided that|J | > 3 andn is
not very high. In the three-electron case, we explicitly computed only the correctionsε4

corresponding to the states with quantum numbers(ns, n,m) = (0, 0, 0) and arbitraryJ
(equations (35)–(39)). Calculations for other states are very similar and can be performed
as simply as those sketched here.

At still lower values of the angular momentum the method is not applicable. However,
we can obtain reliable analytic estimations by means of an alternative procedure: using the
two-point Pad́e approximants, which are extremely simply constructed for the low-lying
states [14]. 1/|J |-expansions and Padé approximants were shown to give similar results at
intermediate|J |-values, i.e. at|J | = 3.

Other problems are currently being treated along these lines. For example, the effects
of anyonic statistics on the energy levels of two quasiparticles in a quantum dot may be
straightforwardly studied by means of the 1/|J |-method [16].
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