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Abstract. We consider systems of two and three electrons in a two-dimensional parabolic
quantum dot. A magnetic field is applied perpendicularly to the plane of motion of the electron.
We show that the energy levels corresponding to states with high angular momehtamd

a low number of vibrational quanta may be systematically computed as power serigd n 1
These states are relevant in the higHimit.

1. Introduction

Recently, few-electron systems in nearly two-dimensional semiconductor structures has been
a subject of intense theoretical and experimental research [1]. In the present paper, we
continue a programme, initiated in [2, 3], aimed at providing reliable analytical estimates
for the energy levels of model two-dimensional systems on the basis of a simple physical
picture for the states.

The idea is to use the inverse of the angular momentum as an expansion parameter in
the Schédinger equation, thus obtaining nonperturbative series for the energy and the wave
function. Variants of this method have been widely used in atomic and nuclear physics
[4, 5].

The static exciton in a magnetic field was considered in [2]. Energy levels were
computed as a function of the mass ratio and the magnetic field. Comparison with estimates
obtained from two-point P@&approximants [6] yielded excellent results at any magnetic
field strength.

In reference [3], a model of three electrons in a quantum dot wjtt? Tepulsion,
considered previously in [7], was studied. Th4Jl-method provided analytical estimates
for the energy and a set of approximate quantum numbers to label the states. We will make
use below of many of the results obtained in [3].

Systems of two and three electrons in a two-dimensional parabolic quantum dot are to
be studied in the present paper. A magnetic field is applied perpendicularly to the dot’'s
plane. Numerical calculations for these systems have been reported elsewhere [8-10]. In
this problem, there is only one relevant paramegets (E.,.;/h2)Y®, whereE,,,; is the
characteristic Coulomb energy, asdis expressed in terms of the dot and the cyclotron
frequencies as2 = /(03 + w?/4). p — 0 will be called the oscillator limit, angg — oo
will be called the Wigner limit, suggesting that we are dealing with a few-electron version
of the Wigner solid. In typical quantum dot experimemis;- 1.
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The physical picture emerging from the/|Z|-expansion is the following. In the
leading approximation, the electrons are located at the vertices of a regular polygon, whose
side minimizes the total classical energy (centrifugal plus potential). The first corrections
take account of small (harmonic) vibrations around the equilibrium configuration. Higher
corrections come from anharmonic oscillations. This picture is supported by numerical
calculations for few-electron systems not only in the strong-coupling regime [11], but also
in the region whereg ~ 1 [12].

Reference [12 ] deserves special comment; in [12] the few-electron problem in Eckardt
coordinates is treated quasiclassically. Although the starting points are far apart, our results
are very similar up to the harmonic approximation. The main difference between reference
[12] and our work is that the expansion parametek is [12], and is ¥|J| in our work.

Higher orders of the quasiclassical expansion are not reported in [12].

The plan of the paper is as follows. In section 2, we present thg-nethod. Results
for two and three electrons are shown in sections 3 and 4. Concluding remarks are given
in the last section.

2. The 1/|J|-expansion

We start with the dimensionless Hamiltonian governing the two-dimensional motieh of
electrons in a quantum dot of enerfjyg, and in a magnetic field normal to the plane of
motion:

H 1 2 2 3 1 W, N gw,
— == —+ —= Jy + =—=S§.. 1
= zé(pﬁrkwﬁ ;rlier;kvLm . @
The conventions are as followsg: is the electron effective mase,. = eB/uc is the
cyclotron frequencyyg is the effective gyromagnetic factos, is the z-component of the
total spin of the system, and = /(w3 + w?/4) is the effective dot frequency. The length

unit is «/h/(u2). The parameteg is given by

4
B = |t [0

K 2h?

wherex denotes the dielectric constant.

The actual parameter governing the problengisWheng « 1, the levels are small
perturbations around oscillator energies. On the other hand, Wwhen co, the energy
minimum is reached in a classical configuration which can be seen as a few-body model of
a Wigner crystal. Both limiting situations reduce to exactly solvable problems.

Through the introduction of Jacobi coordinates, the centre-of-mass motion is separated
from the internal motion:

H Hcm Hint

o T 2 @)
hQ hQ hQ
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We have writtenH,,, in terms of rotationally invariant coordinates, i.e. the moduli of the
Jacobi vectors and the angles between them. The Jacobi vectors were defined as

1 k
Pk=vuk/M1{Tk+1—EZ7"1} k=212,...,N-1 )
=1

where the reduced masses @ne= k/(k + 1). The angle betweep, andp,_, is denoted
aso6,. J labels the total internal angular momentum.

The eigenvalues off,,, are simply

E..
Qe 252 ©)

We shall obtain approximate expressions for the eigenvalués,of We consider states
with high |J|-values, which are the relevant states at high magnetic fields. It is intuitively
evident that at highJ|, E;,, ~ |J| and (p?) ~ |J|. The solution of the Scidinger
equation may be organized as a power series/|d|1 A scaling of dimensions such that

p? — |J|p? makes evident the dependence of each tery¢onThe scaled Hamiltonian is
written as

i{Hint _&J_gwcsz}

- 2”(,"11 + |]Cm| +1+

"R 207 20
+83) =
—1 { N — 1)2 pr } ; Tk
1 32 19 =21 1\ 92
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=1 pk+1 6% 89k+1 JIN =D = \pi  piy1/ 6%

where we have introduced the ‘renormalized’ coupling consgEnte 83/|J1%2. When
taking the formal limit|J| — oo, B3 is kept fixed to take account of Coulomb repulsion
nonperturbatively.

In what follows, we consider only the two- and three-electron problems. The only term
surviving in the r.h.s. of (7) whejy| — oo is the effective potential. Its absolute minimum
gives a classical contribution to the energy. It is reached in a configuration where the
particles sit at the corners of a regular polygon. In this configuration, the effective potential
is a function ofp; only:

2sirf /N Np? B3sin/N Z 1

Uerr = - -
4 Np? 8sirf /N P1 =7 Ising;; /2]

)

whereg;; is the angle between particlésand j, measured from the c.m. Minimization
of U leads to an equilibrium value fopy, p10. The equilibrium values of the other
coordinates oo, 0o, are determined from geometry.
Higher contributions to the energy come from relaxing the equilibrium configuration,
ok = pro + /1T 1Y?, 6 = 6o + z/|J |2 The r.h.s. of (7) may, thus, be expanded as
ha h3 ha

P ha 9
ottt e ®)
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wherehg = U.sr(p10), ho describes in general harmonic oscillations in effective magnetic
fields, andhs, h4, etc account for anharmonicities.

For the spatial wave function and the scaled energy (relatéd, tawe write series like
equation (9):

Y1 Y2
LA 10
w—wo+ml/2+ |J|+ (10)
€2 €4
_ 11
€=co [J|  J2 (11)

These expressions are substituted into the @thger equation, leading to the chain of
uncoupled equations

ho = €0 (12)
hayro = €290 etc (13)

Higher corrections to the energy are obtained from ordinary perturbation theory, idere
hg4, €tc are interpreted as perturbations.
Below, we present results for two and three electrons.

3. Two electrons

For two particles, there is only one Jacobi coordingte= r, — 1. Its equilibrium value
(the modulus) satisfies the equation

1 -
0=-2+ Epfo - Bp1o. (14)
Writing p1 = p10 + y1/|J|¥?, and substituting into the r.h.s. of (7), we obtain the
operator coefficienté,, i3, etc. In particular

ho — ¢ ~|—1U”( ) 2 _ i +1 (15)
2= dyf 2 P10)y = w1\ aq a1 2

wherew; = 2U"(p10) = /3 + 4/,0f0, a; = w'?y1/2 +ip1/w/?, anda} = w'?y,/2 —

ip1/oY2. Note that in the oscillator limitu; — 2, whereas in the Wigner limitoy
approaches the classical resuf8 [13].

To this order, the spatial wave function is written &% ¢o(y1), whereyg ~ (ai)"|0),
and@ is the polar angle associated with the vegier Under a permutation of particles,
changes byr, and thus evenJ| correspond to unpolarized spin stat§s= 0, and odd J |
correspond to polarized states—= 1.

The operatorsy, k > 3, can be written in general as

(—=Dk {(k— 1 1) X t_3 0
he = —— +5 ity T (16)
Pio” plo  2)7H T am
Their matrix elements can be straightforwardly computed. Let us write out the results for
the first nonzero terms of the series (11) in the present case:
3, 1

_3._ 1 17
60 4'010 ,Ofo ( )

€ = a)1<n + %) (18)
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3 < 3 1) 5 1
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2

P10%1 \ P10

15
€6 = —=—5—5(4/p1o+ D*(2n + 1)(47n® + 47n + 31)
8p1ow7

9
+ == (4/plo+ D*(6/pio + D (21 + 1(25” + 251 + 19)
201001

1
- m(es/p;‘o + 1)%(2n + 1)(87n% + 87n + 86)
L1001

10
+ —5 5 (21 + D(14n® + 1dn + 13)
P10@1

1
+ ——5 @ + {10/ pfy + 1)(5n® + 5n + 9) — 9/pio)
P10®71

Y (2n+1) etc (20)
L1001

n labels the number of excitation quanta. It is a good approximate quantum number of
the problem over the whole intervalQ 8 < oco. Notice that all of thes, with k > 2 go
to zero in both the oscillator and Wigner limits. Thus, th&J1-expansion provides a nice
interpolation scheme.

In figure 1(a), we compare different approximations to the r.h.s. of (7) computed
according to the series (11). The excited state witk= 2 and|J| = 3 is shown. The
convergence is excellent. We cannot distinguish the curves containing the corregtions
andeg (printed as dashed lines) from the solid line corresponding, té €2/|J|. Even at
such a low value ofJ| as 3,¢4 introduces corrections lower than 1%, andintrodudes
corrections lower than 0.3%. The relative weighigin € = eg+¢€2/|J | +€a/ T2 +€6/|J |3
is shown in figure 1(b).

In figure 2, the energy/|e is compared with the estimate obtained in [14] from the
two-point Pa& approximantPs 5(8). These approximants are exact in both ghe> 0 and
B — oo limits. They were checked against exact results at particular intermediate values
of B [15]. We expect the approximants to approach the exact energy from above, and to
differ from it by no more than a few parts in 4Q14]. The results are consistent with the
expectations. Similar results are revealed in the comparison with the numerical calculations
of [9].

Notice that the conditions for the application of perturbation theory are fulfilled at any
B when|J| > 3, i.e. the distances between adjacent levels, computeddgone,/|J|, are
much greater than the correctioag/|J|?> + - --. Below, we will see that in the three-body
problem the corrections, although small, may cause a partial rearrangement of the spectrum.

4. Three electrons
In the three-electron system, there are two Jacobi vecieis= r, — r1 and p, =

JA4/3{rs — (r1 + r2)/2}, in terms of which we define two distances;, p2, and one
angle,0;. The equilibrium configuration is an equilateral triangteo(= 020, 610 = £7/2),
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Figure 1. (a) The energy of thé/| = 3, n = 2 state of two electrons. (b) The relative weight
of €g in €.

whose side satisfies the equation
0= —1+ plp—3B°010. (21)

At its minimum, U, (p10) = 3pf0/2 — p1’02/2, thus providing a leading approximation
to the energy:

3, 1
€0 = ZP10— 2’7
10

2
Expanding around one of the two equivalent configurations, i.e. figigg= /2 for
example, we obtain a series like (9) in which the first operator coefficients are given by

(22)

h <82+82+2 82) 2 sgn(J)( ) +1<3+1)(2+ )
2= s+t m+t>5—=) = n-yd—+ = yit+y
0 03 phdzi)  ph 021 4\ pfy b
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Figure 2. The relative difference betweert|e and thePs 5 Pade approximant for two electrons
in a state with|J| =3,n =0.

1

1
1— — | (5y% + 6y1y2 + 5y5 + 3p223) (23)
16 P10

1/0 0 2 92 3i d 1
hy = ——(— + —) + =5 1+ y2) o + 5 SO OF — ¥3) o — —5 (07 +¥3)
pro\dys  dy2) " oy 023 " ply o0 gt

1 1
- (1 - —)(19y1 + 3y2y2 + 33y1y2 4 9y3
64010 p10

— 9pioy1zd + 21p3py227) (24)

1/ 9 9 3 52
h4=—( +yz—>——(y2+y2)—
P2\ toys " Paye ) T ply T T 022

4i
— p—i}sgruxﬁ ) Ly 25 (yl +y9)

1 3 9 123 9
1- —25 2y2 + 135y1y5 + ~ys
+ 256’0%0( p10>( 27 y1y2+ 5 ——y1y5 +135y1y5 + 272

- g—zgpfoyfz'i + 27pToy1yazt + 1;

The Hamiltoniank,, which is to be taken as the zeroth-order Hamiltonian, describes a
harmonic oscillator of frequency; = /(3+ 1/p10) in the variabley, = (y1 + y2)/v/2,
plus a combination of harmonic oscillators and an effective magnetic field in the variables
Ym = (y1 — yz)/ﬁ andz, = ,01021/\/2 Note that the ‘magnetic field’ comes from the
coupling between the angular momentum and the derivative with respect to the variable
01 (see the Hamiltonian (4) foN = 3). We may use a symmetric gauge to describe the
effective magnetic field. The Hamiltonian is transformed according te €/he~'/, where
f= sign(])ymzm/(z,ofo). h’, takes the symmetric form

W 82+13+1 » 32+1a+132
A Sl Sl F TRl e

1 41
phoki elsl) e @)
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1 1
IO N —(3 - —4)52 (26)
pp da 8 P10

where & = /y2 +z2 and ¢ = arctanz,,/y.). The corresponding eigenvalues and
eigenfunctions are

€2 = wi(ng +1/2) + w2(2n + |m| + 1) + sgn(J)mws (27)
Yo ~ H,, (vwr /2y, e 0 Agmlgmens? /A Iml (4,2 /2 me (28)

in which w; = /3/2— p13'/2, w3 = 1/p%, H,,, and L)' are Hermite and generalized
Laguerre polynomials, and and m are respectively principal and magnetic quantum
numbers in the effective magnetic field. In the oscillator linat, — 2, wp, wz — 1,
whereas in the Wigner limitp;o — oo, w1 — /3, wo — /3/2, andws — 0. At finite 3
there is no degeneracy between the statés ahus we may use nondegenerate perturbation
theory to compute corrections.

We shall identify which of the levelsJ( ny, n, m) may describe electron states. This
set of quantum numbers will serve as approximate quantum numbers for the three-electron
problem. At intermediate couplings, a small mixing between the statéswill be induced
by the correctiongi; and A,

Let us recall the symmetry requirements for three-electron wave functions. A spatially
antisymmetric wave function¥, = €’%y,, where & accounts for global rotations,
corresponds to a spin-polarized stafer 3/2, whereas a mixed-symmetty is related to
an unpolarized spin stat§,= 1/2. Symmetry transformations will be expressed in terms of
the variables that we are using, i)g, &, andw. Additionally, to identify physical stated/o
will be compared with oscillator functions f@ — 0. A detailed analysis is presented in the
appendix of paper [3], to which we refer the reader. The main conclusion is that(m, e
plane, the spatially symmetric and antisymmetric states occupy thenlired + 3k, where
k is an integer. For example, let us consider the first statesvith—3 wheng < 1. The
lowest state is#, n, m) = (0, 0,0). This corresponds to both one antisymmetric and one
symmetric state. In our scheme, as tunnelling effects are not included, they are degenerate
in energy. Of course, only the antisymmetric state may correspond to a state of three
electrons. Very near to the lowest state there is the mixed-symmetry do(ilet,l). At
excitation energies near 2, there are the ley&l®, 0), (1,0, 1), (0,0, —1), (0, 1, 0), and
(0,1,1). Symmetric and antisymmetric states have= 0. The next set of states is at
excitation energies near 4, etc.

Up to this order, the energy computed frem= ¢+ €, /|J| leads to results very similar
to that reported in [12]. That is, whef ~ 1 the relative error of the lowest state with
a given|J| represents only a few per cent of the total energyJat= 3, and decreases
considerably a$J| is increased. The reader may look at figures 3 and 4 of paper [12] as
examples.

Let us studyg wheng is varied from 0 toco. As in the two-electron problem, the higher
corrections,es/|J|? + - - -, go to zero in both th¢ — 0 andp — oo limits. However,
for certain levels, a rearrangement of the spectrum may take place. For example, let us
consider spatially antisymmetric states with= —3k, wherek is positive and high enough.

The lowest state in this sector has quantum numig@rs, 0). We show in figure 3 the
excitation energies of three states with quantum numb@r8, 3), (1, 0, 0), and (0, 1, 0).

Their energies are(d, — w3), w1, and 2v, respectively. Transitions among these states
induced byhsy, k), etc may occur ap > 0.6, thus resulting in a rearrangement of levels.

To compute their energies at the intermediate valueg @fhere the intersections occur,

we shall resolve the degeneracy by means of degenerate perturbation theory. On the other
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(0,0,3)

Bl(B+1)

Figure 3. Excitation energies of three states with= —3k, andk positive and high enough.
The quantum numbers are indicated.

hand, there are levels, in particular those with numkger®), 0), for which we can apply
the 1/|J|-expansion continuously frod = 0 to oc.
Let us compute the coefficienj for a state with quantum numbei® 0, 0). We assume
J < 0 and|J| large enough. These are the relevant states at high magnetic fields. We shall
compute the matrix elements entering the expression

(Os 07 O|h/3|nss nv m><nS’ ns m|h/3|0$ Oa 0)

€4=1(0,0,0/14]0,0,0) — > . (29)

ngw1 + (2n + [m))wz — mws

ng,n,m

Taking into account the explicit form df;, i.e.

b
h’3=A§+ByS+Cyf+D (30)
where
2
Ao Y2 (31)
P10
V2 (92 sgn(J) @ 1 3 1
=—{—2 2Ig—2ym———4y§——<1——4)(y3,+z,i)} (32)
P10 aZm P10 3Zm 4,0]_0 16 P10
V2 1
= —— <1 + —4> (33)
4p10 P10
52 ( 1 ) 3 )
= — 1— — ), — 3ymzy,) 34
32,010 pf’o Y Y ( )

we obtain that the sum over intermediate states in (29) contains only a few terms. The
following result fore, arises:

C
€2 = (0, 0,040, 0,0) —

2
—(3|y3]0)?
3w1< ly510)
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1 1 1 A2 0
—§&aDmm{ + )+—4u

w2 — w3 w2+ w3 wp Ay

10)?
c 3
o1 (1ys10)(11y710)(0, 0| B|O, O)

C2 31n\2 1 2 2
— —(1Iy710” — —(1ly,10)*(0, 0| B|O, O)
w1 w1

(0, 2| B|0, 0)2 (0, —2|B|0, 02 }
— (1]y,]0)2 35
o1 {w1+2(w2—w3) w1 + 2(wy + w3) (35)
where
1 3 /1 1 15 /1 1)?
(0,0, 0/4/0,0,0) = —— — _6<_ n _> N _6<_ N _)
Plo  wapgo\@W2 @1/  Bpjp\wi @2
1 3
+ _2<1+ =2 + 7T 53 >
8p1o w1 0121y W3P10
3 1\/13 12 16
+ 2<1__4)(_2+_+_2> (36)
6401y P1o/ \@z ~ @W1W2 W]
5.6 1
(0,3|D|0,0) = ——3/2<1— —4> (37)
160100, P10
2
0.01810,0) — — Y22 (38)
2p10
1 1
(0,+2|B[0, 0) = +— — —2 — —— (39)

Pl 410 dwapd

and the matrix elements involving, are ordinary oscillator matrix elements, that is
(1y,]0y = 1/./w1, etc. Note that, as mentioned abowg, — 0 in both theg — 0
and g — oo limits.

[Ps a=]J el

0.003
0.0025
0.002
0.0015

0.001

5

Figure 4. The relative difference betwegii|e and thePs 4 Pade approximant for three electrons.
The lowest antisymmetric state with= —3 is studied.
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Figure 5. The relative weight ok, in €. The same state as in figure 4 is considered.

In figure 4 we compare the/LJ |-expansion and the two-point FadpproximantPs 4(8)
of [14] for the lowest antisymmetric state with= —3. As in the two-electron case, the
relative error is of the same order as the error of theéPestimate, i.e. a few parts in
10°. The comparison with the numerical results of [10] for polarized states leads to similar
conclusions. We show in figure 5 the relative weightegfin € = ey + €2/|J| + €4/ J%.
For states with still higher values ¢F |, the relative magnitude of the contribution of
decreases considerably.

5. Conclusions

We have computed the energy levels of two and three electrons in an ideal parabolic two-
dimensional quantum dot in the presence of a magnetic field. States with high angular
momentum and a low number of excitation (vibrational) quanta were considered. The
energy was found as a series in the ‘small’ paramejgy |1 The series exhibits good
convergence properties even |dff = 3. Notice that the expressions obtained for two
electrons (equations (17-20)) can be used for any level, provided.that 3 andn is

not very high. In the three-electron case, we explicity computed only the correetjons
corresponding to the states with quantum numkegsn, m) = (0, 0,0) and arbitraryJ
(equations (35)—(39)). Calculations for other states are very similar and can be performed
as simply as those sketched here.

At still lower values of the angular momentum the method is not applicable. However,
we can obtain reliable analytic estimations by means of an alternative procedure: using the
two-point Paé approximants, which are extremely simply constructed for the low-lying
states [14]. 1|J|-expansions and Padapproximants were shown to give similar results at
intermediatg J|-values, i.e. atJ| = 3.

Other problems are currently being treated along these lines. For example, the effects
of anyonic statistics on the energy levels of two quasiparticles in a quantum dot may be
straightforwardly studied by means of th¢|1|-method [16].



8476 A Gonzalez et al

Acknowledgments

One of the authors (AG) acknowledges support from the Colombian Institute for Science
and Technology (COLCIENCIAS) and from the International Centre for Theoretical Physics
(Trieste, ltaly), where part of this work was done.

References

(1]

(2]
(3]
(4]

(5]
(6]
(7]
(8]
El
(10]
(11]

(12]
(13]
(14]
(15]
(16]

See, for example,

Johnsa N F 1995J. Phys.: Condens. Mattét 965 and references therein

Quiroga L, Camacho A and Gonzalez A 1995Phys.: Condens. Matte? 7517

Gonzalez A, Quiroga L and Rodriguez B 1986w-Body Sys21 47

Herschbach D R, Avery J and Goscinki O (ed) 199Bnensional Scaling in Chemical Physi(Bordrecht:
Kluwer)

Gonzalez A 1991Few-Body Syst10 43

MacDonatl A H and Ritche D R 1986Phys. RevB 33 8336

Johnsa N F and Quiroga L 199®hys. Rev. Leti74 4277

Maksym P A and Chakraborty T 199Bhys. Rev. Let65 108

Merkt U, Huser J and Wagner M 19%hys. RevB 43 7320

Hawrylak P and Pfannkuche D 19%3ys. Rev. Letfr0 485

Ruan WY, Liu Y Y, Bao C G and Zhag Z Q 1995Phys. RevB 51 7942

Li X G, Ruan WY, Bao C G and Liu Y Y, 199Few-Body Sys22 91

Maksym P A 1996Phys. RevB 53 10 871

SchweigerV A and Peetes F M 1995Phys. RevB 51 7700

Gonzalez A 1997. Phys.: Condens. Matte® 4643

Taut M 1993Phys. RevA 48 3561

Perez R and Gonzalez A 1997 to be submitted



